Roadmap to Post-Quantum Migration

NISDUC Luxembourg, 06/04/2025 Nicolas Lempereur, BIPT

Institut belge des services postaux et des télécommunications

Agenda

- 1. Introduction
- 2. PQC : solutions
- 3. Migration & roadmap
- 4. Regulators and autorities

Cryptography in modern companies...

Threat scenarios

STORE-NOW & DECRYPT LATER

LONG MIGRATION PERIOD

How to deal with a threat that hasn't yet emerged

Institut belge des services postaux et des télécommunications

We need preparation, awareness and planning

- Migrate in Time
- Protect what really matters
- Integrate quantum-safe solutions

Preparing for migration is an opportunity

Preparing for the quantum threat should become an important aspect of security management \bigcirc

PQC : solutions

Institut belge des services postaux et des télécommunications

Solutions

• Symmetric Algorithms → Mild risk (Grover's algorithm)

We can use longer keys and longer hashes (parameters)

Asymmetric algorithms → Will be broken by Shor's algorithm

Solution: new algorithms; new mathematical problems

Hybrid solutions

Combination: **Pre-quantum** algorithm + **Post-Quantum** algorithm

Example: *a hybrid signature*

 $sign_{Hybrid}(message) = sign_{traditionnal}(message) || sign_{PQC}(message)$

Hybrid solutions

Hybrid Solution	Only Post Quantum algorithm
Proven maturity of traditional cryptography	Simpler
More complex to implement	Riskier (still maturing)
More complex to operate	

Migration : How to establish the roadmap

Institut belge des services postaux et des télécommunications

Type of companies

Roadmap – Planning

- 1. Assets & cryptography inventories
- 2. Risks assessment
- 3. Plan risk-oriented migration
- 4. Migration execution
- 5. Continuous research

Inventories

Cryptographic assets inventory

Vendors dependencies inventory

Data assets inventory

Inventory of Cryptographic Assets

Goal:

- Exhaustive list of uses of cryptography
- → Track all assets to migrate (algorithms, keys, certificates)
 → Also handy outside of PQC migration

Most important part of the assessment

Inventory of Cryptographic Assets

Crypto Asset

Type

→ Standard formats allow tools to generate part of the inventory

→Some format allow dependencies reference

Inventory tools

 \odot

Inventory of dependencies on vendors

Goal:

- Exhaustive list of cryptography depending on suppliers
- Products & services (Hardware, software, CA)
- (Planned) Support for PQC
- Contracts & contacts details

Shadow IT & additional tools (messaging, documentations)

Inventory of data assets

Goal:

- List of data handled by the organisation
- Type of data: data at rest, data in transit, data in use
- Location, Usages
- Value of the data
- Classification of data
- Their protection

Cryptographic assets inventory

— ×- Vendors dependencies inventory

Data assets inventory

Risk assessment

- ➔ Prioritize assets to migrate
- ➔ Anticipate consequences

Risk

- Threat → Attacker using Quantum Computers
- Vulnerability → PQC vulnerabilities
- Impact → What if ?

<u>+ Time and effort to migrate</u>

Risk assessment: Lifetime of data assets

→ Identify **lifetime** of your information assets

- Business value
- Regulatory requirements
- Security reasons
- Confidentiality
- → Lifetime & impact

Risk assessment: Infrastructure migration time

→ Estimate the time required to migrate technical infrastructure

- Current technologies
- Current procedures
- Available quantum-safe cryptography
- Discussion with suppliers
- → Time information + migration steps information

Risk assessment: time for threat actors to access quantum technology

 \odot

→ Estimate time for threat actors to access quantum technologies

- Analyze quantum threats
 - Papers / Independant researchers
 - Industry experts
 - Guidelines

Assess the timing until current cyber defences collapse vs threat with access to quantum technology

 \odot

[2024] 32 Experts estimates of likelihood of a quantum computer able to break RSA-2048 in 24hours

Risk assessment – Quantum Risk

→ Determine quantum risk by calculating whether assets will become vulnerable before the organization can move to protect them (Mosca's inequality)

Migration planning

Goal

→ For each cryptographic asset, **decide** if, when and how to migrate

→ Decide priorities / order

• Planning of testing & implementation

Migration risks

- Forgotten assets, dependancies
- No hardware
- New crypto vulnerabilities
- Standards updates and changes
- ...

→ Mitigation plan in case of problems

Exécution

Continuous research

Relationship with suppliers

Migration execution

Regulators and autorities

Institut belge des services postaux et des télécommunications

The role of the authorities

The decisions we make today will shape the security of tomorrow

Institut belge des services postaux et des télécommunications

Sources

- Quantum Threat Timeline Report 2024, Mosca M & Piani M., December 2024
- A Methodology for Quantum Risk Assessment, Dr. Michele Mosca & John Mulholland, 2017
- The PQC Migration Handbook, AIVD & CWI & TNO, December 2024

What are the PQC solutions ?

Post-C	Quantum	Cryptography (PQC)	
--------	---------	--------------------	--

Why ?	Advent of Quantum Computers
What ?	Key establishment + others
How ?	Transmission of classical signals
Why it works ?	Mathematical difficulty to break the Confidientiality & integrity
When ?	Started mid 70's

Why?	Advent of Quantum Computers
What ?	Achieve key establishment
How ?	Transmission of quantum signals
Why it works ?	Physical impossibility to break the confidentiality
When ?	Started in 1984

Same **problem**, different **solutions**

PQC is an efficient and cost-effective solution while QKD is not mature yet

Discovery of Cryptographic Assets

Software development

- Cryptographic libraries
- Custom crypto components

Tool / Process in the software dev Life Cycle

	Systems and applications	Network traffic		Hardware	
•	VPN IAM Data encryption	 PKI SSH, TLS, sFTP IPSec 	• - • -	HSM Products	
	Asset Management	Network Analysis		Asset Management	

Migration plan – Info for timing

- Crypto **agility** => Prepare to Quick updates
- Maintain operations → isolate domains (PQC and preQC)
- Store now decrypt later attacks → Sensitivity + protection period
- Prioritization: business & regulation priorities,
- Planning of **testing** & implementation
- Budgeting
- => Takes a lot of time